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This note is devoted to two questions of G. Kothe and M. M. Day: To what
extent is smoothness or rotundity of a normed linear space inherited by its
quotient spaces? Can smoothness or rotundity of a normed linear space be
characterized by that of certain of its quotient spaces? By relating these
questions to the problem of existence of best approximations, the only known
positive answer to the first question is generalized and the second question is
answered in the affirmative. As a consequence, it is obtained that the existence
of best approximations is not an invariant under equivalent smooth renorming.
Finally, the possibility of a "reasonable" complete answer to the first question
is discussed.

Let X be a real or complex normed linear space. The unit ball of X is the set
{x E X: flxil < I}. The unit sphere of X is the boundary of the unit ball of X,
i.e., the set {x E X: II xii = I}. Xis called smooth, resp. rotund, ifevery pointofthe
unit sphere of X is a smooth point, resp. an extreme point, of the unit ball of X.
(Recall that an element x of the unit sphere of X is called a smooth point of the
unit ball of X if there exists exactly one element x* of the unit sphere of the dual
space x* of X such that x* x = 12 and, further, that an element x of the unit
sphere of X is called an extreme point of the unit ball of X if x = !(Xj +X2)

with X!,X2 in the unit sphere of X implies that x = XI = Xl')

Since it is easily verified that a complex normed linear space is smooth, resp.
rotund, if and only if it has the corresponding property when regarded as a
real normed linear space, we assume henceforth all normed linear spaces to
be real.

If A is a closed linear subspace of a normed linear space X, 71 denotes the
canonical projection of X onto the quotient space X/A which is equipped with
the canonical norm II7Ixll: = inf {llx - all:a E A} = : dist (x, A). The adjoint 71*

of 71, which maps an element!of (X/A)* onto the composition! 071 in X*, is
then an isometric isomorphism of (X/A)* onto the annihilator Ai- of A in X*.

1 Presented to the American Mathematical Society, January 27, 1969.
2 That at least one such element x* exists is a consequence of the Hahn-Banach separa­

tion theorem,
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A is called an existence subspace of X if for every element x of X there is a
best approximation in A, i.e., an element a of A such that Ilx - all = 1117xll. We
remark that the property ofhaving best approximations in A is compatible with
the equivalence relation defined by 17, i.e., for every element x of X either all
elements of 17- I ({17X}) have best approximations in A or none has.

It was shown by V. Klee ([3]; Prop. 3.3) that smoothness of a normed linear
space need not be inherited by all of its quotient spaces, by proving that, given
a separable normed linear space X and a nonreflexive closed linear subspace
A of X with codimension at least two, X can be equivalently renormed in such
a way that it becomes smooth, while X/A does not. Earlier, M. M. Day ([2];
p. 114) had shown the same for rotundity by proving that for each infinite set [,
there exists a rotund isomorph of the real Banach space 11(I) that has non­
rotund quotient spaces.

In the following lemma we show-using the language of the theory of best
approximations-that smoothness or rotundity of a normed linear space is
not completely lost under the formation of quotient spaces. As a corollary we
obtain necessary and sufficient conditions for the properties under question
to be transmitted to a quotient space.

LEMMA. Let X be a normed linear space and A a closed linear subspace of X.
(i) Smoothness ofX implies that every element 17X ofthe unit sphere ofthe

quotient space X/A with the property that x has a best approximation in A,
is a smooth point ofthe unit ball ofX/A.

(ii) Rotundity of X implies that no convex subset of the unit sphere of
the quotient space X/A contains more than one element 17X with the property
that x has a best approximation in A.

Proof For the proof of (i) we assume that X is smooth. Let 17X be in the unit
sphere of X/A and be such that x has a best approximation a in A. Iffl andJi
in the unit sphere of the dual (X/A)* of X/A are such thatfl(17x) = fi17X) = 1,
17*fl and 17*f2 are in the unit sphere of A..L and 17*fl (x - a) = 17*fleX - a) = 1.
Since X is smooth, this implies 17*fl = 17*f2' which in turn implies fl = fl'
Hence 17X is a smooth point of the unit ball of X/A.

For the proofof(ii) we assume that X is rotund. Let 17X and 17Y be elements of
a convex subset of the unit sphere of X/A such that x andy have best approxi­
mations a and b, respectively, in A. By the Hahn-Banach separation theorem
there exists an f in the unit sphere of (X/A)* such that f(17X) = f(17Y) = 1.
Then 17*fis in the unit sphere of A..L and 17*f(x - a) = 17*f(y - b) = 1. This
shows that x - a and y - b lie in a convex subset of the unit sphere of X.
Since X is rotund, convex subsets of its unit sphere are singletons. Hence
x - a = y - b, i.e., 17X = 17Y and this completes the proof.
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COROLLARY. Let X be a normed linear space and A a closed linear subspace
ofX. IfXis smooth, resp. rotund, the quotient space X/A is smooth, resp. rotund,
ifand only ifevery element TTX of the unit sphere of X/A with the property that x
has no best approximation in A, is a smooth point, resp. an extreme point, of the
unit ball of X/A.

In the following theorem we characterize smoothness or rotundity of a
normed linear space by that of certain of its quotient spaces. We remark that
M. M. Day ([2]; p. 114) observed that smoothness, resp. rotundity, of all two­
dimensional quotient spaces ofa normed linear space is equivalent to rotundity,
resp. smoothness, of its dual space, which in turn implies-but is not implied
by-smoothness, resp. rotundity, of the space itself. The implication
"(i) => (ii)" of the theorem improves a result of V. Klee ([3J; Prop. 3.2) which
states that the quotient spaces of a smooth or rotund normed linear space
with respect to reflexive subspaces inherit these properties.

THEOREM. Let X be a normed linear space. The following are equivalent:
(i) X is smooth, resp. rotund.
(ii) For every existence subspace A of X, the quotient space X/A is

smooth, resp. rotund.
(iii) There exists a natural number n < dim X - 2 such that for every

n-dimensional subspace A of X, the quotient space X/A is smooth, resp.
rotund.

Proof. The implication "(i) => (iii)" is an immediate consequence of the
corollary and the implication "(ii) => (iii)" is obvious.

For the proof of the smoothness part of the implication "(iii) => (i)" we
assume (iii) for some natural number n < X - 2. If then X is not smooth, there
exist distinct elements Xl *, X2* of the unit sphere of x* and an element x of
the unit sphere of X such that Xl*X=X2*X= 1. Now xt-1({O}) n x!-l({On
contains an n-dimensional subspace A of X. The quotient space X/A is then
not smooth because 7Txis in the unit sphere of X/A and7T*-l(Xl*)' 7T*-1(X2*) are
distinct elements of the unit sphere of (X/A)* satisfying 7T*-l(Xl*)(7TX) =
7T*-l(Xt*) (7TX) = 1, contradicting our assumption. (That 7Tx is in the unit sphere
of X/A follows from the well-known facts that 117Txli < lixil = 1 and 117Txll =
sup {x* x: x* in the unit sphere ofA 1-Ptogether with the fact that, by definition
of A, XI * and X2 * are in the unit sphere of A 1-. This last fact shows at the same
time that 7T*-l(Xl *) and 7T*-1(X2*) have the properties required.)

For the proof of the rotundity part of the implication "(iii) => (i)" we assume
again (iii) for some natural number n < dim X - 2. If then X is not rotund,
there exist distinct elements X1>X2 of the unit sphere of X and an element x*

3 This is a simple consequence of the Hahn-Banach separation theorem.
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of the unit sphere of X* such that x* XI = x* X2 = 1. Now x*-I({On contains
an n-dimensional subspace A of X whose intersection with the one-dimensional
subspace of X spanned by XI - X2 is zero. The quotient space X/A is then not
rotund because 1TXI and 1TX2 are distinct elements of a convex subset of the
unit sphere of X/A, a contradiction to our assumption. (That 1TXI and 1TX2 are
distinct follows from the definition of A; that they are in the unit sphere of
X/A follows as above; finally, that they lie in a convex subset of the unit sphere
of X/A follows from 1T*-I(X*) (1TXI) = 1T*-I(X*) (1TX2) = 1.)

This completes the proof of the theorem.

Remark 1. Combining the implication "(i) =>. (ii)" of the theorem with the
result of V. Klee ([3]; Prop. 3.3) mentioned above, we obtain the following
curiosity:

Let X be a separable normed linear space and A a closed linear subspace
of X with codimension at least two. Then A is reflexive if and only if it is an
existence subspace of X with respect to every smooth norm on X which is
equivalent to the original one.4

We remark that the hypothesis of separability of X in this result cannot be
dropped because (cf. M. M. Day [1]) there exist nonseparable Banach spaces
that admit no equivalent smooth norm but contain nonreflexive existence
subspaces of codimension at least two, e.g., for every infinite set I, the space
1

00
(1) of all bounded real-valued functions on I with the supremum norm,

where the subspace can be chosen to be the set of all elements of100(1) that vanish
at two distinct points of I.

I do not know whether in the above result "smooth" can be replaced by
"simultaneously smooth and rotund"; cf., however, the remark of V. Klee
([3]; p. 62).

Remark 2. In order that a quotient of a smooth or rotund normed linear
space with respect to a closed linear subspace inherits these properties, it is
not necessary that the subspace be an existence subspace: If X is a nonreflexive
Banach space whose dual X* is rotund, resp. smooth, then X and all of its
quotient spaces are smooth, resp. rotund (cf. M. M. Day [2]; pp. 112, 114)
whereas X contains closed linear subspaces of codimension at least two that
are not existence subspaces of X (cf. 1. Singer [4]; p. 92).

In the following we give a different kind of example for the same fact:
Let I be a nonempty set, (Xi: i E I) a family of normed linear spaces and let

p be a real number greater than one. lp{Xi : i E I) denotes the linear space of

4 That a reflexive subspace of a normed linear space is an existence subspace follows by a
simple compactness argument.
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all elements x of the Cartesian product of the Xi with the property that the
mapping i f--+ IlxCi)[[P of I into the reals is summable, equipped with the norm
x = (LiElllx(i)IIP)I/p (cf. M. M. Day [2]; pp. 28-31 for details). Iffor every i in I,
Ai is a closed linear subspace of Xi, liAi :i E 1) is obviously a closed linear
subspace of l/Xi :i E I) and it is easily verified that for every x in liXI : i E I)

(i) dist (x, lp(Ai:i E 1)) = (LiEf dist (x(i),Ai)P)l/p.
This shows that an x in l/Xi :i E 1) has a best approximation a in Ip(A i:i E 1)

if and only if for every i in I, xCi) has the best approximation a(i) in AI' which
implies in particular

(ii) l/Ai:i E I) is an existence subspace of lvCX!: i E 1) if and only if for
every i in I, Ai is an existence subspace of Xi'

Another consequence of (i) is
(iii) The mapping x + l/Ai:i E I) f--+ (xCi) + Ai: i E 1) is an isometric

isomorphism of lp(Xi:i E 1)ll/Ai :i E 1) onto I/XdAi: i E 1).
We shall show now how these observations can be used to construct the

desired example. Let I have at least two elements. Choose for some io in I a
smooth, resp. rotund, normed linear space X io whose dual is not rotund, resp.
smooth and choose for every remaining i in I a normed linear space Xi with
rotund, resp. smooth, dual. Since X io is not reflexive, it contains a closed
hyperplane A io which is not an existence subspace of X/o (cf. 1. Singer [2];
p. 92). For every i in I distinct from io let Ai be a closed linear subspace of Xi'
different from zero and Xi' Then by (ii), Ip(A i :i E I) is not an existence subspace
of Ip(X/:iEl). However, by (iii) we have that liXi:iEI)lliAi:iEI) is
isometrically isomorphic to liXdAi: i E I) and the latter space is smooth,
resp. rotund, because all the XdA i are. Finally, the dual of Ip(Xi : iE I) is
lp/(p_ll(X, *: i E I)(cf. M. M. Day [2]; p. 31) and this space is not rotund, resp.
smooth, because Xio is not.

In view of the last example it seems unlikely to me that-apart from the not
very illuminating corollary above-a"reasonably simple" complete description
can be given of the extent to which smoothness or rotundity of a normed linear
space is inherited by its quotient spaces.
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